Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis.
نویسندگان
چکیده
During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.
منابع مشابه
XNF-ATc3 affects neural convergent extension.
Convergent extension is the primary driving force elongating the anteroposterior body axis. In Xenopus, convergent extension occurs in the dorsal mesoderm and posterior neural ectoderm, and is mediated by similar molecular pathways within these tissues. In this paper, we show that activation of NF-AT, a transcription factor known to modulate multiple signaling events, inhibits convergent extens...
متن کاملChato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo.
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgest...
متن کاملCoordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling
Most animals undergo gastrulation to establish germ layers and embryonic axes. The dynamic morphogenetic cell movements that take place during gastrulation are highly coordinated. In Xenopus embryos, these cell movements, which include involution and convergent extension, are driven predominantly by mesodermal cells (Keller, 1991; Keller et al., 1992). This is particularly obvious during conver...
متن کاملA novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor.
Convergent extension behaviour is critical for the formation of the vertebrate body axis. In Xenopus, components of the Wnt signaling pathway have been shown to be required for convergent extension movements but the relationship between cell fate and morphogenesis is little understood. We show by loss of function analysis that Xnr3 activates Xbra expression through FGFR1. We show that eFGF acti...
متن کاملEssential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements.
beta-Arrestin 2 (betaarr2) is a multifunctional protein that regulates numerous aspects of G-protein-coupled receptor function. However, its possible involvement in developmental processes is poorly understood. In this work, we examined the potential role of betaarr2 during Xenopus early development. Gain- and loss-of-function studies showed that Xenopus betaarr2 (xbetaarr2) is required for pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 128 13 شماره
صفحات -
تاریخ انتشار 2001